## DINO 结构分析笔记(1)

### 时程分析选取地震波的问题

### 时程分析选取地震波的问题

在高层结构分析当中,地震作用的计算,主要采用振型分解反应谱法。其中,振型分析反应 谱法的原理就是先对结构进行模态分析,得到每个周期与振型,进而求出各阶模态的周期在 反应谱曲线中对应的地震影响系数值(该值可以理解为这一周期的结构响应),然后对全部 振型对应的结构响应进行组合,得到最终的结构响应。对超过一定高度的结构,振型分解反 应谱法算出来的响应往往反应不了高阶振型的影响,主要是对顶部的构件,因此需要进行时 程分析。这是高层结构需要进行时程分析的原因,而大跨度结构需要振型分析的原因则略有 不同。

与反应谱法相对应的是时程分析法。时程分析法,就是用一个特定的地震波,作为加速度场激励作用,直接计算结构受到激励作用后的响应。那么,除了地震波时程,结构的响应还与 刚度、质量、阻尼等因素相关。反应谱法的结果是稳定的:如果结构是不变的,输入一定的 反应谱后,只能得到一个响应。而时程分析则与选取的地震波有关,地震波的选取,很大程 度影响时程分析的结果。

我国规范对选取地震波,有两项重要的规定: (1)地震波的反应谱的形状在结构特征周期 附近与规范规定的反应谱要在统计意义上吻合; (2)时程分析得到来的结构反应中的基底 剪力,单条波不少于规范的65%,多条波平均值不少于规范的80%。规范上述两项规定是 出于以下考虑:地震波要充分反应场地特征,如Ⅱ类场地,对应的场地周期是一定的,选 取的地震波要接近Ⅱ类场地谱的形状;我们称经过折减后的结构周期为折减后周期,该值 及小于该值的附近周期段涵盖了结构的前几阶的周期值,其反应谱参与的成分最高,如果选 取的地震波在周期段财与规范反应谱吻合,那么通过计算后,结构的响应非常有可能自动满 足规定(2),当然也体现了规定(1)的要求了。

那么,如何合理地选取地震波呢?首先我们要确定地震波的来源: PEER 的地震波数据库 提供了大量强震记录,这些地震波涵盖了各类场地、经过基线调整、严格复核,最重要的是 该数据库提供了强大的搜索功能——只要输入目标反应谱,系统会搜索到一定样本数量的地 震波,用以匹配目标反应谱,使得样本的平均反应谱与目标反应谱在一定周期范围内的均方 差最小。在这个基础上,再通过 ETABS 程序进行批量计算,选出基底剪力满足规范要求的 地震波就可以了。总的来说,选择地震波的思路就是"先选后试"。这里的"地震波"指的是天 然波,人工波不需要选取,由安评报告获得,如果是科研分析,可以自己拟合生成人工波。 进行时程分析时,两组选波方法: (1)3组波,1组人工波+2组天然波,(2)7组波,2 组人工波+5组天然波。要注意的是,采用双向地震波时,人工波的两个方向的组合系数是 1.0+0.85,而天然波只对主波进行倍数A的放大,使其峰值达到规范规定小震、中震或大震 的峰值,而次方向波也按倍数A放大,倍数A不再采用0.85进行调整。

PEER 选取天然波的网站为:

<u>http://peer.berkeley.edu/peer\_ground\_motion\_database/spectras/new</u>,如下图所示。 点取"select

models to generate target spectrum"(选取生成地震波目标谱方式),由于我们不是采用美国 反应谱做设计,所以一般采用自定义反应谱"user defined spectrum"。

首先把规范反应谱或者场地反应谱的曲线值采用多线段表示出来,保存为 EXCEL 表格,存储格式为 CSV 格式(CSV 格式为带逗号分隔的数据文本)。为了使格式正确导入,建议在网站上下载 CSV 的样版格式,点击"Download Example file(.csv)",向网站导入曲线后得到如图 1(a)所示的结果。



图 1 PEER 强震数据库选波示意图

在搜索地震波的页面有几个参数需要输入。如图 1(b)所示,网站找波的依据为输入一个周期 段,周期段内吻合的地震波会被选取出来。本文建议取两个周期段,一个是结构第一周期的 折减周期,第二个是场地平台段的中点对应的周期。两个周期点的加权系数均为 1。程序选 取后,会出现很多组地震波,建议选取 10 组至 20 组导出,然后再放入 ETABS 进行试算, 将基底剪力满足规范要求的地震波作为最后选波的结果。



|   | Mode | Period   | UX       | UY       | UZ       | RZ       | • |
|---|------|----------|----------|----------|----------|----------|---|
| • | 1    | 3.464934 | 0.490284 | 0.010887 | 0.000000 | 0.498829 |   |
|   | 2    | 3.098362 | 0.005728 | 0.566754 | 0.000000 | 0.427518 |   |
|   | 3    | 2.646398 | 0.174761 | 0.298285 | 0.000000 | 0.526953 |   |
|   | 4    | 1.007715 | 0.762640 | 0.004048 | 0.000000 | 0.233311 |   |
|   | 5    | 0.801457 | 0.004384 | 0.283110 | 0.000000 | 0.712506 |   |
|   | 6    | 0.731554 | 0.079201 | 0.136004 | 0.000000 | 0.784795 |   |
|   | 7    | 0.509875 | 0.684940 | 0.001695 | 0.000000 | 0.313365 |   |
|   | 8    | 0.375625 | 0.020540 | 0.163950 | 0.000000 | 0.815510 |   |
|   | 9    | 0.358140 | 0.048340 | 0.069430 | 0.000000 | 0.882231 |   |
|   | 10   | 0.320987 | 0.500702 | 0.002677 | 0.000000 | 0.496620 |   |
|   | 11   | 0.315255 | 0.063589 | 0.044772 | 0.000000 | 0.891640 |   |
|   | 12   | 0.292327 | 0.063380 | 0.047340 | 0.000000 | 0.889280 |   |
|   | 13   | 0.265079 | 0.062974 | 0.189261 | 0.000000 | 0.747765 |   |
|   | 14   | 0.247554 | 0.067682 | 0.205001 | 0.000000 | 0.727316 |   |
|   | 15   | 0.246452 | 0.089716 | 0.062669 | 0.000000 | 0.847615 |   |
|   | 16   | 0.238021 | 0.087747 | 0.070750 | 0.000000 | 0.841503 |   |
|   | 17   | 0.226521 | 0.031396 | 0.311489 | 0.000000 | 0.657115 |   |
|   | 18   | 0.221967 | 0.360342 | 0.001039 | 0.000000 | 0.638619 | - |

#### 图 2 ETABS 模型及模态分析结果

现在以某剪力墙结构为例,该结构7度设防,场地土类别为II类,设计地震分组为第一组,周期折减系数取0.9,其ETABS模型及模态分析结果如图2所示。则在选波时,0.225s~3.119s周期段对应的权重为1,地震波选取结果如图1(c)、(d)所示。

接下来在 ETABS 定义时程函数和时程工况,如图 3 所示。在定义时程函数时,选择"Function From File"选项, ETABS 提供了"要跳过的标题行"、"每行要跳过的前缀字符"、"每行点数" 等参数设置,便于读取各种格式的文件。对于从 PEER 强震数据库下载的地震波文件,需要 事先获取点数(NPTS)、时间间隔(DT)和前缀字符数等信息,再如图 3(a)中设置时程函 数。在定义时程工况时,需要对地震波的峰值进行调整,其中,比例系数=规范要求地震加 速度峰值/地震波的峰值,换算时需要注意单位一致;此外,还需要定义阻尼,由于 ETABS 中时程分析采用的时模态积分法,因此只提供了定义模态阻尼的设置,对于一般的钢筋混凝 土结构,所有振型的阻尼比均取为 0.05;其它的参数设置如图 3(b)所示。



<sup>(</sup>a)

图 3 ETABS 中时程函数及时程工况设置

计算完成后,在 ETABS 中通过【文件】->【打印表格】->【结构总信息】等按钮,可以查看结构在各个工况下的楼层力。整理振型分解反应谱法和时程分析法的结果,如图 4 所示,该地震波时程分析的基底剪力不小于反应谱法计算结果的 80%,则认为该地震波满足规范的要求。

<sup>(</sup>b)

# since dinochencom



图 4 振型分解反应谱法和时程分析法结果对比