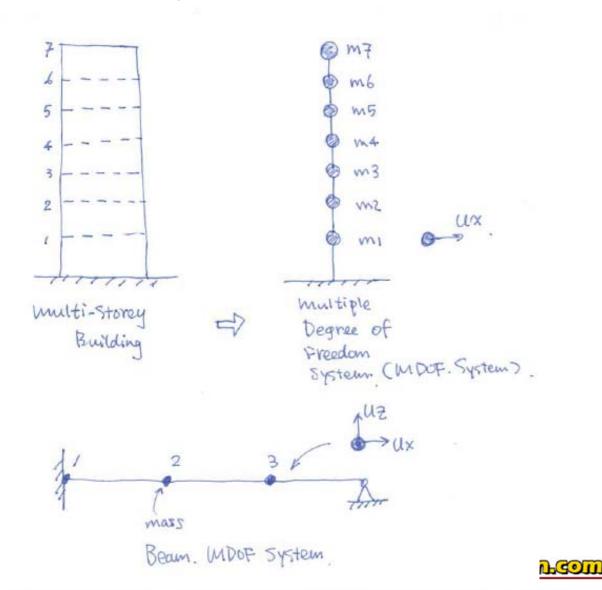
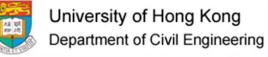
Dr. Dino Chen

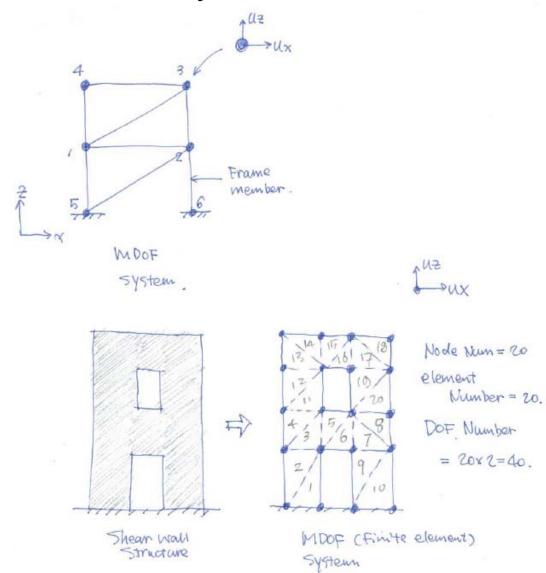
CIVL7008 Seismic Analysis for Building Structures


Lec-04 Modal Analysis of MDOF System



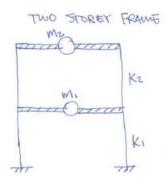
Dr. Dino Chen

What is MDOF System?



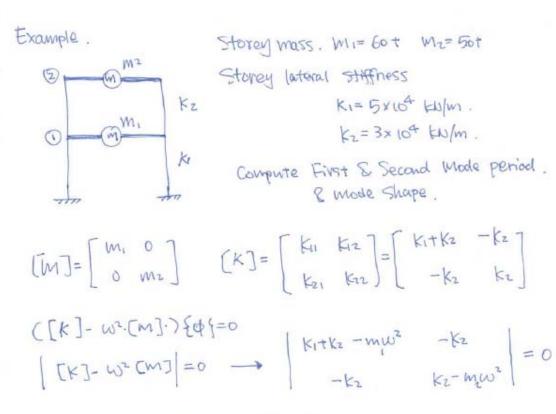
Dr. Dino Chen

What is MDOF System?

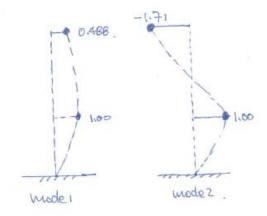


Dr. Dino Chen

Modal Analysis of 2 DOF System



- ① undamped system. + Free Vibration.
 [M] {\u00e4\u00e4+\u00bbk]+\u00bbk] \u00e4\u00bbk] = {0}
- 2 Assume Vibration disp. {u} = {c} f. sin wt.
- 3 Füg= w2. Edf. simut.
- (4) $[M] \cdot (-\omega^2) \cdot \{\phi\} \cdot \text{Sinwt} + [k] \cdot \{\phi\} \cdot \text{Sinwt} = \{0\}$ $\downarrow \quad ([k] \omega^2 \cdot [m] \cdot) \cdot \{\phi\} = \{0\} \longrightarrow \text{Homogeneous System} \quad \text{of linear equations.}$ $\downarrow \quad [k] \cdot -\omega^2 \cdot [m] = 0 \longrightarrow \text{Necessary Condition.}$ For wonzero solution. $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{12}] \omega^2 \cdot [m_1 \quad 0] = 0$ $\downarrow \quad [k_{11} \quad k_{1$

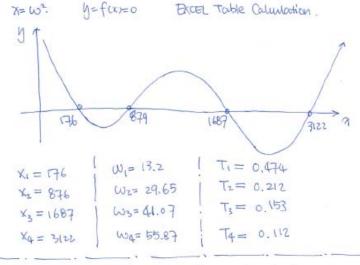

Dr. Dino Chen

$$8 \times 10^4 - 60.00^2 - 3 \times 10^4 = 300^4 - 5.8 \times 10^3 00^2 + 1.5 \times 10^6 = 0$$

 $-3 \times 10^4 - 5000^2 = 300^4 - 5.8 \times 10^3 00^2 + 1.5 \times 10^6 = 0$
 $\Rightarrow 3A^2 - 5.8 \times 10^3 A + 1.5 \times 10^6 = 0$

$$\Rightarrow \begin{cases} A = \omega_1^2 = 307.6 & \omega_1 = 17.54 \text{ Yad/s} \\ A_2 = \omega_2^2 = 1625.8 & \omega_2 = 40.32 \text{ Yad/s} \text{ University of Hong Kong} \end{cases}$$

Dr. Dino Chen



Dr. Dino Chen

y of Hong Kong nt of Civil Engineering

Dr. Dino Chen

mode shape Calculation. Wi=176. (mode shape 1).

$$D(W) = \begin{bmatrix} 800 - 176 & -800 & 0 & 0 \\ -800 & 2400 - 352 & -1600 & 0 \\ 0 & -1600 & 4000 - 352 & -2400 \\ 0 & 0 & -2400 & 5600 - 528 \end{bmatrix} = \begin{bmatrix} 624 & | -400 & 0 & 0 \\ -800 & | 2048 & -1600 & 0 \\ 0 & | -1600 & 3648 & -2400 \\ 0 & | 0 & -2400 & 5072 \end{bmatrix}$$

$$D_{b\bar{b}} = \begin{bmatrix} 2048 & -1600 & 0 \\ -1600 & 3648 & -2400 \end{bmatrix} \qquad D_{ba} = \begin{bmatrix} -800 & -800 & -800 \\ 0 & -2400 & 5072 \end{bmatrix}$$

$$D_{bb}^{-1} = \frac{1}{12805312} \begin{bmatrix} 12444 & 7925 & 3750 \\ 7075 & 10144 & 4800 \\ 3750 & 4800 & 4796 \end{bmatrix}$$

$$(\phi_{1}) = - [D_{bb}]^{-1} D_{ba}$$

$$= -\frac{1}{(2865312)} * \begin{cases} 12444 * (-800) \\ 7925 * (-800) \end{cases} = \begin{cases} 0.777 \\ 0.495 \end{cases}$$

$$(\phi_{1}) = \begin{cases} 1.000 \\ 0.777 \\ 0.469 \end{cases}$$

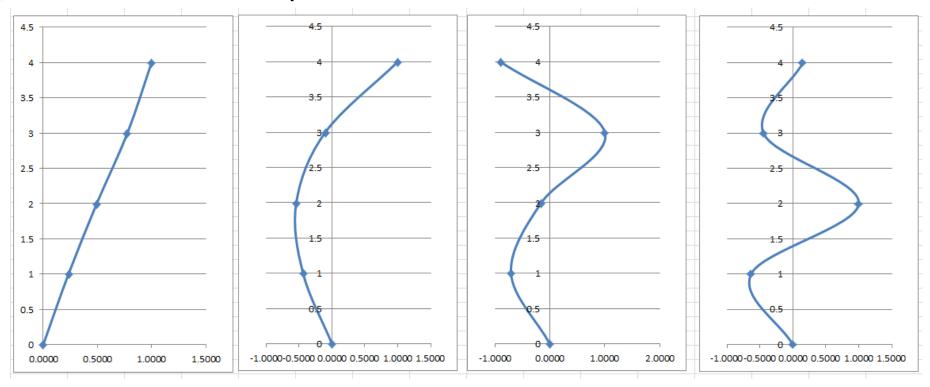
Dr. Dino Chen

Use Excel table to Eigenvalue

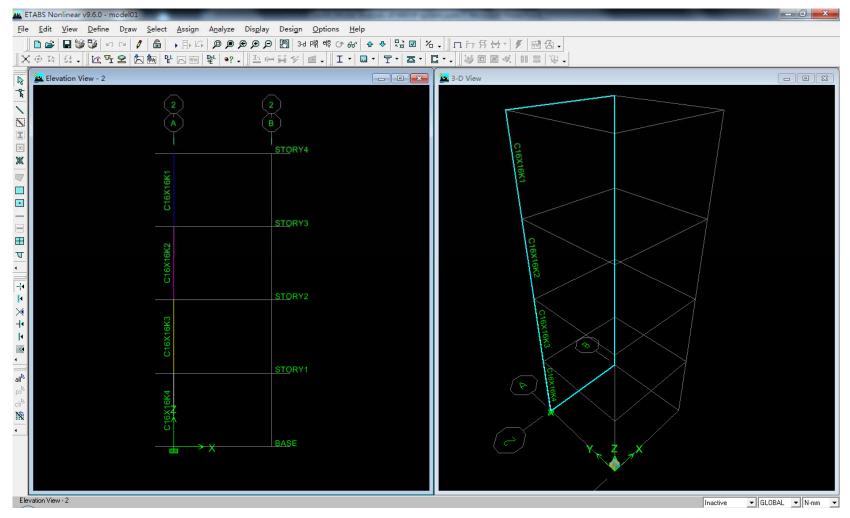
	start	0		
	inc	170		
step	X	у		
0	0	9.8304E+12		
1	170	2.56339E+11	5E+13	
2	340	-3.96523E+12	25+12	
3	510	-4.54876E+12	4E+13	
4	680	-2.96814E+12	72115	
5	850	-4.56725E+11	3E+13	
6	1020	1.99265E+12		
7	1190	3.62772E+12	2E+13	
8	1360	3.93675E+12		
9	1530	2.64852E+12	1E+13	
10	1700	-2.676E+11		
11	1870	-4.60174E+12	0	
12	2040	-9.90348E+12		ф 500 1000 1500 2000 2500 3000 3500 400
13	2210	-1.54819E+13	-1E+13	
14	2380	-2.04053E+13	25,112	
15	2550	-2.35019E+13	-2E+13	
16	2720	-2.3359E+13	-3E+13	
17	2890	-1.83234E+13	52.13	
18	3060	-6.50158E+12		
19	3230	1.42408E+13		
20	3400	4.62784E+13		

Dr. Dino Chen

Mode shape 2.

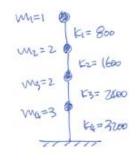

$$W_2^2 = 876$$
 $D(W_2) = \begin{cases} -76 & -800 & 0 & 0 \\ -800 & 1648 & -1600 & 0 \\ 0 & 1600 & 2748 & -2400 \\ 0 & 10 & -2760 & 2792 \end{cases} = \begin{bmatrix} D_{00} & D_{00} \\ D_{00} & D_{00} \\ D_{00} & D_{00} \end{bmatrix}$
 $D_{00} = \begin{cases} 448 & -1600 & 0 \\ -1600 & 2248 & -2400 \\ 0 & -2400 & 2792 \end{cases} = \begin{cases} -800 & 0 \\ 0 & 0 \end{cases}$
 $D_{00} = \begin{cases} -28783 & -146600 & -1780000 \\ -146600 & -48600 & -48600 \\ -1700000 & -48600 & -48600 \end{cases} = \begin{cases} -0.105 \\ -0.193 \\ -0.458 \end{cases}$
 $0.44850 & -0.458 \end{cases}$
 $0.44850 & -0.45810 \\ -0.455 & -0.45810 \end{cases}$
 $0.44850 & -0.45810 \\ -0.455 & -0.45810 \end{cases}$
 $0.44850 & -0.45810 \\ -0.455 & -0.45810 \end{bmatrix}$
 $0.44850 & -0.45810 \\ -0.4580 & -0.45810 \\ -0.4580 & -0.45810 \end{bmatrix}$
 $0.44850 & -0.45810 \\ -0.4580$

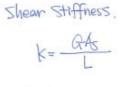
Dr. Dino Chen


Use Excel to Plot Mode Shape

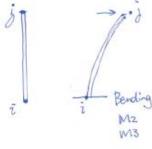
Dr. Dino Chen

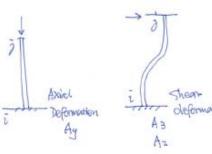
Etabs or SAP2000 model compute mode shape

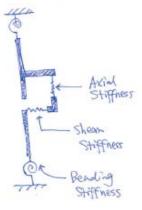




Dr. Dino Chen

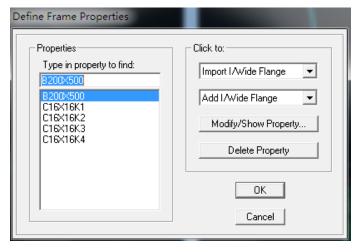

Etabs or SAP2000 model compute mode shape

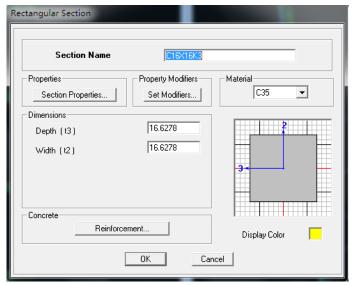


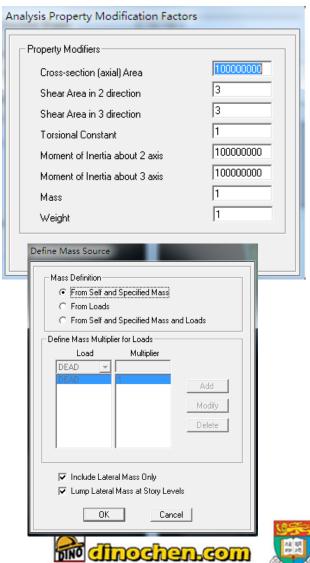


$$C_1 = \sqrt{Ag} = \frac{kL}{G} = 0.8333$$

$$= \frac{800 \times 3000}{10416.67 \times 0.8353} = 16.628 \text{ (mm)}$$

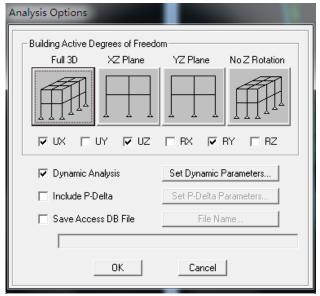


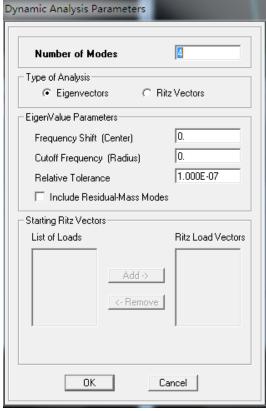


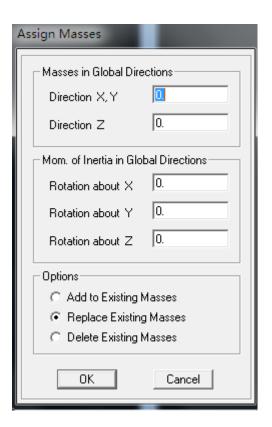


Dr. Dino Chen

Etabs or SAP2000 model compute mode shape

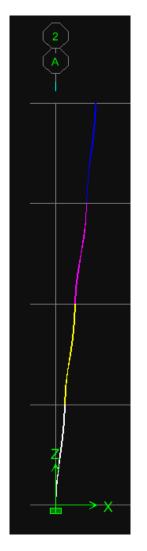




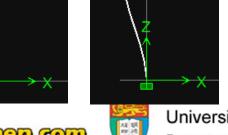


Dr. Dino Chen

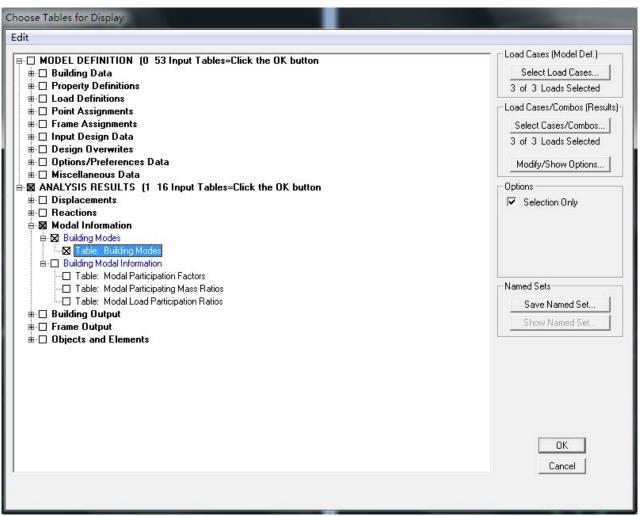
Etabs or SAP2000 model compute mode shape





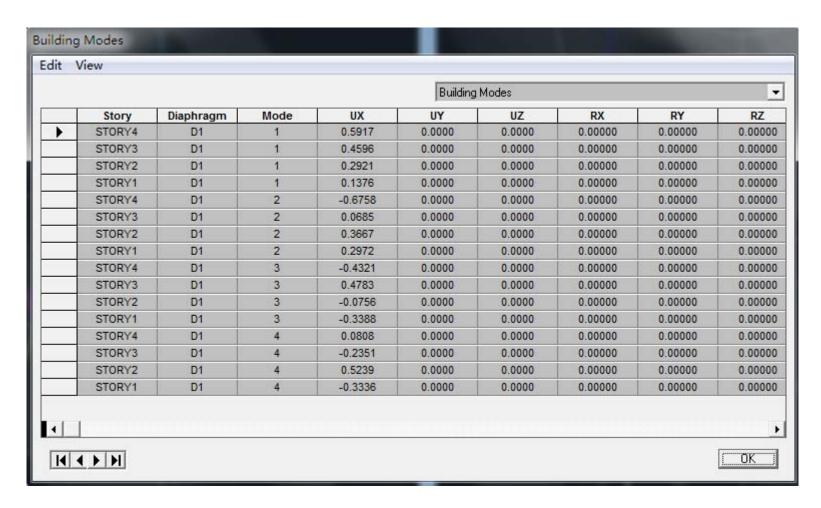

Dr. Dino Chen

Etabs or SAP2000 model compute mode shape



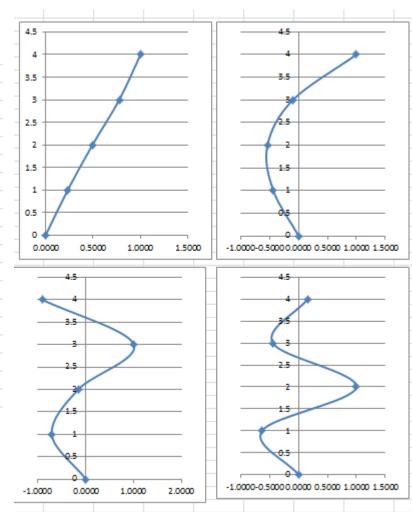
Dr. Dino Chen

Etabs or SAP2000 model compute mode shape



Dr. Dino Chen

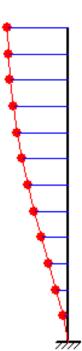
Etabs or SAP2000 model compute mode shape



Dr. Dino Chen

Normalization

MODE	1	2	3	4
STORY4	0.5917	-0.6758	-0.4321	0.0808
STORY3	0.4596	0.0685	0.4783	-0.2351
STORY2	0.2921	0.3667	-0.0756	0.5239
STORY1	0.1376	0.2972	-0.3388	-0.3336
max	0.5917	0.3667	0.4783	0.5239
min	0.1376	-0.6758	-0.4321	-0.3336
absmax	0.5917	0.6758	0.4783	0.5239
sign	1	-1	1	1
maxv	0.5917	-0.6758	0.4783	0.5239
Storey	mode 1	mode 2	mode 3	mode 4
4	1.0000	1.0000	-0.9034	0.1542
3	0.7767	-0.1014	1.0000	-0.4487
2	0.4937	-0.5426	-0.1581	1.0000
1	0.2326	-0.4398	-0.7083	-0.6368
0	0.0000	0.0000	0.0000	0.0000



Dr. Dino Chen

How about more than 4 storey Building (Simplified model)?

Transform the Matrix D to Matrix B

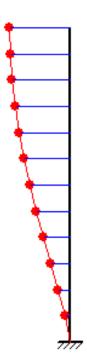
$$\lceil M \rceil \big\{ \ddot{x}(t) \big\} + \lceil K \rceil \big\{ \dot{x}(t) \big\} = \{0\}$$

Assume $\lceil M \rceil^{-1} \lceil K \rceil = \{P\}$

$$([P] - \omega^{2}[I]) \{X\} = \{0\}$$
$$[P] \{X\} = \omega^{2} \{X\}$$

Take

$${}^{1}\left\{ Z\right\} =\left[\sqrt{M}\, \right] \left\{ X\right\} \, ,$$


$$\begin{bmatrix} B \end{bmatrix} \{Z\} = \omega^2 \{Z\}$$
$$\begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} \sqrt{M} \end{bmatrix}^{-1} \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} \sqrt{M} \end{bmatrix}^{-1}$$

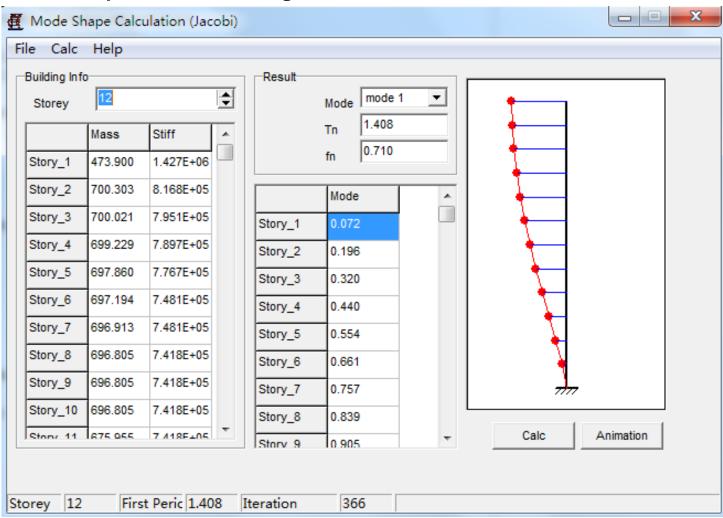
$$\begin{bmatrix}
[P] - \omega^{2}[I] \\
[P] (X) = \omega^{2} \\
[P] (X)$$

Dr. Dino Chen

How about more than 4 storey Building (Simplified model)?

$$\begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} \frac{K_1 + K_2}{m_1} & \frac{-K_2}{\sqrt{m_1} \sqrt{m_2}} & 0 & \cdots & 0 \\ \frac{-K_2}{\sqrt{m_1} \sqrt{m_2}} & \frac{K_2 + K_3}{m_2} & \frac{-K_3}{\sqrt{m_2} \sqrt{m_3}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \frac{-K_{n-1}}{\sqrt{m_{n-2}} \sqrt{m_{n-1}}} & \frac{K_{n-1} + K_n}{m_{n-1}} & \frac{-K_n}{\sqrt{m_{n-1}} \sqrt{m_n}} \\ 0 & 0 & \cdots & \frac{-K_n}{\sqrt{m_{n-1}} \sqrt{m_n}} & \frac{K_n}{m_n} \end{bmatrix}$$

Relationship between {x} and {z}, which use to compute mode shape

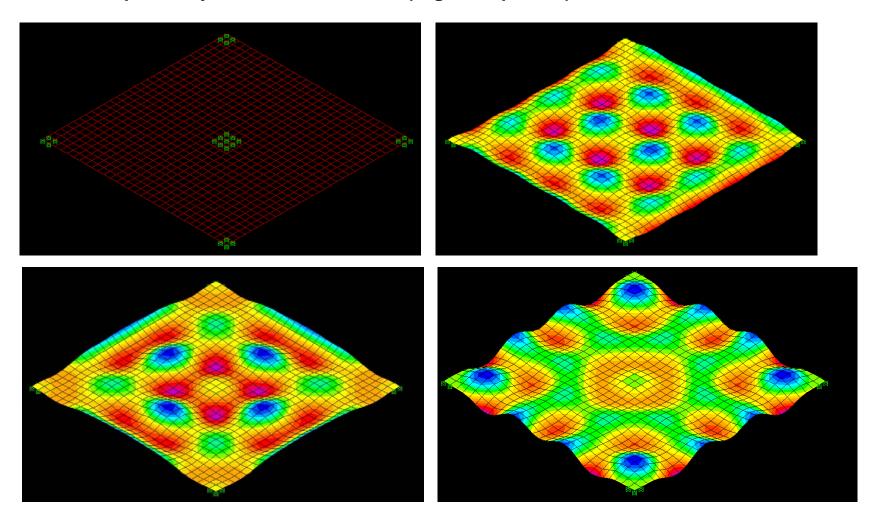

$$\left\{X\right\} = \left[\sqrt{M}\right]^{-1} \left\{Z\right\}$$

Dr. Dino Chen

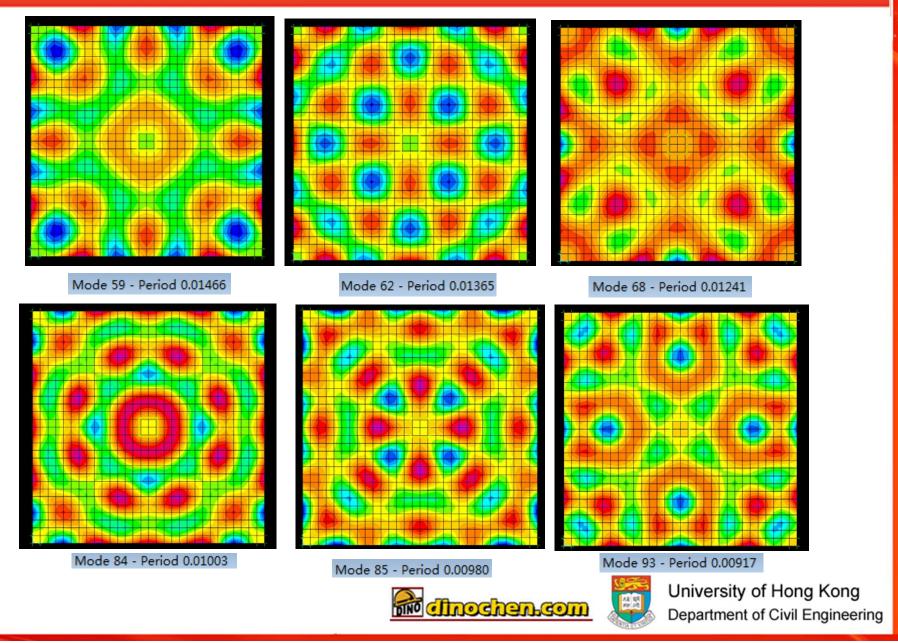
Mode Shape Calculation Program

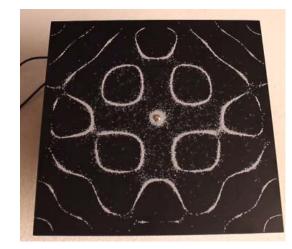
Mode Shape Calculation Program

```
//form matrix K and Matrix M
for i:=1 to n do
begin
 k[i]:=strtofloat(stringgrid1.Cells[2,i]);
m[i]:=strtofloat(stringgrid1.Cells[1,i]);
end;
//Form Matrix B
 setlength(b,n+1,n+1);
 setlength(v,n+1,n+1);
 setlength (m1, n+1, n+1);
 setlength(rr,n+1,n+1);
 setlength(rr2,n+1,n+1);
 for i:=1 to n do
 for j:=1 to n do
 begin
 b[i,j]:=0; //Clear
  end;
 for i:=2 to n-1 do
 begin
 b[i,i] := (k[i]+k[i+1])/m[i];
 b[i,i-1]:=-k[i]/(sqrt(m[i-1])*sqrt(m[i]));
 b[i,i+1]:=-k[i+1]/(sqrt(m[i])*sqrt(m[i+1]));
 b[1,1] := (k[1]+k[2])/m[1];
 b[1,2]:=-k[2]/(sqrt(m[1])*sqrt(m[2]));
 b[n,n] := k[n]/m[n];
 b[n,n-1]:=-k[n]/(sqrt(m[n-1])*sqrt(m[n]));
 //Form Matrix E
  combobox1.Clear:
  for i:=1 to n do
  combobox1.Items.Add(format('mode %d',[i]));
```


```
jacobi(b,n,d,v,nrot);
statusbar1.Panels[5].Text:=inttostr(nrot);
for i:=1 to n do
zx[i]:=2*pi/sqrt(d[i]);
for i:=1 to n do
num[i]:=i;
for j:=1 to n do
for i:=1 to n-j do
begin
 if zx[i]<zx[i+1] then
 begin
 temp:=zx[i];
 temp2:=num[i];
 zx[i]:=zx[i+1];
 num[i]:=num[i+1];
 zx[i+1]:=temp;
 num[i+1]:=temp2;
 end:
end; //order
```


Dr. Dino Chen


Mode Shape Analysis of Shell Element (High Freq mode)


Dr. Dino Chen

Dr. Dino Chen

Lec-02 Vibration of SDOF System

Dr. Dino Chen

Lec-04 Modal Analysis of MDOF System

