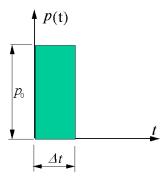
Dr. Dino Chen

CIVL7008 Seismic Analysis for Building Structures


Lec-03 Forced Vibration of SDOF System

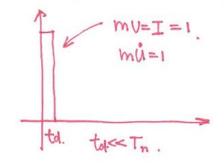
Dr. Dino Chen

Force Vibration: Rectangle Impulse Excitation

$$I = p_0 \Delta t$$

$$m\ddot{v} + c\dot{v} + kv = 0$$

$$v(t) = e^{-\xi\omega t} \left[\frac{\dot{v}_0 + v_0 \xi\omega}{\omega_d} \sin \omega_d t + v_0 \cos \omega_d t \right]$$


$$\dot{v}_0=0, \qquad \dot{v}_0=\frac{p_0}{m}\Delta t$$

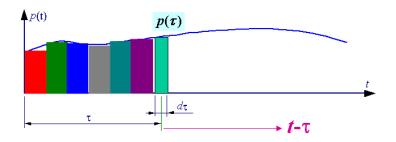
$$v(t) = e^{-\xi \omega t} \frac{p_0 \Delta t}{m \omega_d} \sin \omega_d t$$

Dr. Dino Chen

Rectangular Impulse

$$\begin{cases} V(0) = \frac{1}{m} & \text{initial Condition} \\ U(0) = 0 \end{cases}$$

Mamped System.


Patientar Solution

Up = St Sp(c) exp[-Sw(t-z)]. Sin and (t-z) dz

Duhamel Integration.

Dr. Dino Chen

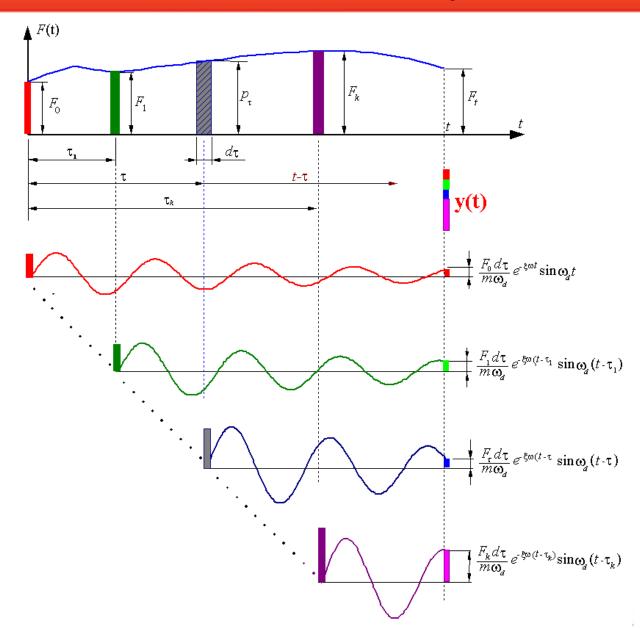
From
$$v(t) = e^{-\xi \omega t} \frac{p_0 \Delta t}{m \omega_d} \sin \omega_d t$$

$$t \to t - \tau$$

$$p_0 \to p(\tau)$$

$$\Delta t \to d\tau$$

$$dv(t) = \frac{p(\tau) d\tau}{m \omega_d} e^{-\xi \omega(t - \tau)} \sin \omega_d (t - \tau)$$


$$v(t) = \int_0^t \frac{p(\tau)}{m\omega_d} e^{-\xi\omega(t-\tau)} \sin \omega_d(t-\tau) d\tau$$

Dr. Dino Chen

(ong jineering

Dr. Dino Chen

Dr. Dino Chen

Excel Table for Duhamel Integration

$$v(t) = A(t) \sin \omega_D t - B(t) \cos \omega_D t$$

$$A(t) \equiv \frac{1}{m \,\omega_{\scriptscriptstyle D}} \, \int_0^t \, p(au) \, \frac{\exp(\xi \omega au)}{\exp(\xi \omega t)} \, \cos \omega_{\scriptscriptstyle D} au \, d au$$

$$B(t) \equiv \frac{1}{m \,\omega_D} \, \int_0^t \, p(\tau) \, \frac{\exp(\xi \omega \tau)}{\exp(\xi \omega t)} \, \sin \omega_D \tau \, \, d\tau$$

Simple summation:

$$A_N \doteq A_{N-1} \exp(-\xi \omega \triangle \tau) + \frac{\triangle \tau}{m \omega_D} y_{N-1} \exp(-\xi \omega \triangle \tau)$$

$$N = 1, 2, 3, \cdots \quad (6-17a)$$

Trapezoidal rule:

$$A_N \doteq A_{N-1} \exp(-\xi \omega \triangle \tau) + \frac{\triangle \tau}{2 m \omega_D} \left[y_{N-1} \exp(-\xi \omega \triangle \tau) + y_N \right]$$

$$N = 1, 2, 3, \dots \quad (6-17b)$$

Simpson's rule:

$$A_{N} \doteq A_{N-2} \exp(-2 \xi \omega \triangle \tau)$$

$$+ \frac{\Delta \tau}{3 m \omega_{D}} \Big[y_{N-2} \exp(-2 \xi \omega \triangle \tau) + 4 y_{N-1} \exp(-\xi \omega \triangle \tau) + y_{N} \Big]$$

$$N = 2, 4, 5, \cdots \quad (6-17c)$$

Dr. Dino Chen

Excel Table for Duhamel Integration

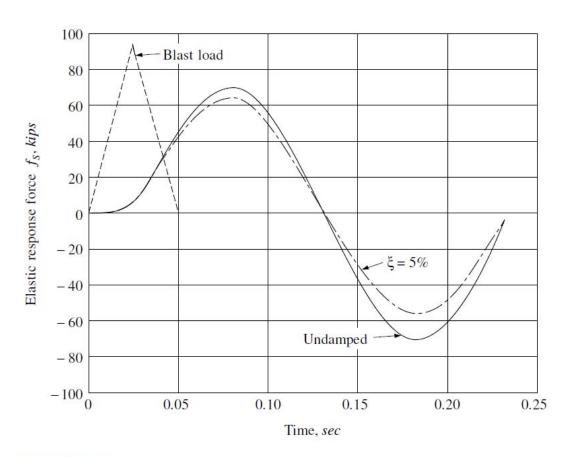
TABLE E6-2 Numerical Duhamel integral analysis including damping

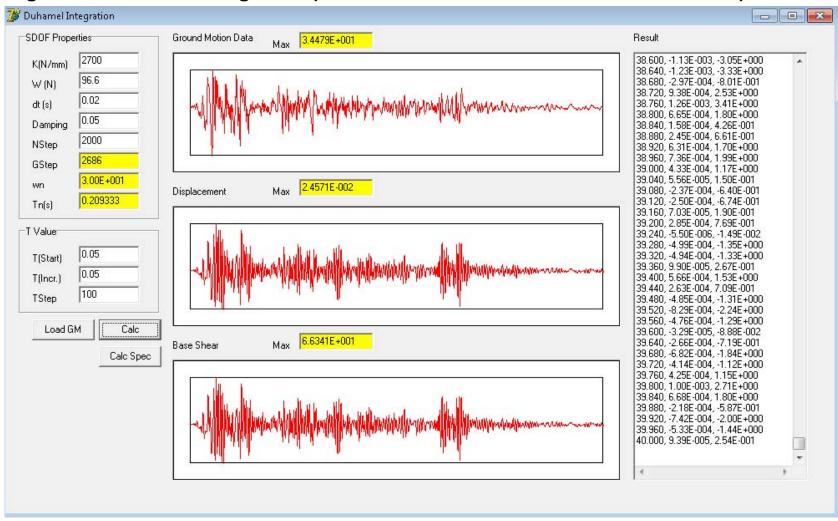
N	I _N	P _N kips (1)	sin30 <i>t</i> ₈	cos301 _A .	Y _K (1)×(3) kips (4)		y _{N-2}	M ₁ × (5)	M ₂ × [(6)+(9)] (8)	A _{N-2} F	\(\frac{A_N}{F}\) (4)+(7)+(8) (10)	1 1 1		У _{К-3}	(12)	M ₂ × [(13)+(16)] (15)	$\frac{B_{N-2}}{F}$ (16)	<u>B_N</u> F (11)+(14)+(15) (17)	(10)×(2) (18)	(17)×(3) (19)	(18)-(19) (20)	v _N F×(20) fi (21)	f _{S_N} k×(21) kips (22)
0	0.000	0	0	1.000	0	_	_	_			0	0	_	1	_	_	_	0	0	0	0	0	0
1	0.005	19.32	0.149	0.989	19.1	0	_		_	_	_	2.88	0	_	_	-		_		_	_	_	_
2	0.010	38.64	0.296	0.955	36.9	19.1	0	75.8	0	0	112.7	11.4	2.88	0	11.4	0	0	22.8	33.3	21.8	11.5	0.0002	0.58
3	0.015	57.96	0.435	0.900	52.2	36.9	19.1	_	_	_	_	25.2	11.4	2.88		-	_	-	_	_	_	_	
4	0.020	77.28	0.565	0.825	63.8	52.2	36.9	207.2	147.4	112.7	418.4	43.7	25.2	11.4	100.0	33.7	22.8	177.4	236	146	90	0.0017	4.50
5	0.025	96.60	0.682	0.732	70.7	63.8	52.2	_	-		_	65.9	43.7	25.2	-	_	_		_	_	-	_	***
6	0.030	77.28	0.783	0.622	48.1	70.7	63.8	280.7	475.0	418.4	803.8	60.5	65.9	43.7	261,6	217.8	177.4	539.9	629	336	293	0.0054	14.65
7	0.035	57.96	0.867	0.498	28.9	48.1	70.7	_	_	-	-	50.3	60.5	65.9	-	_	_	_	-	-	-	_	
8	0.040	38,64	0,932	0.362	14.0	28.9	48.1	114.7	839.1	803.8	967.8	36.0	50.3	60.5	199.7	591.4	539.9	827.1	902	299	603	0.0112	30.2
9	0.045	19.32	0.976	0.219	4.23	14.0	28.9	-	_	_	_	18.9	36.0	50.3	-	-	-	-	-	-	_	_	
10	0.050	0	0.997	0.0707	0	4.23	14.0	16.8	967.1	967.8	983.9	0	18.9	36.0	75.0	850.1	827.1	925.1	981	65.4	915	0.0169	45.8
11	0.055	0	0.997	-0.0791	0	0	4.23	-	-	_	_	0	0	18.9	-	_		-	-	-	_	-	
12	0.060	0	0.974	-0.227	0	0	0	0	969.1	983.9	969.1	0	0	0	0	911.2	925.1	911.2	900	-206	1106	0.0205	55.4
13	0.065	0	0.929	-0.370	0	0	0	-	-	-	-	0	0	0		_	_	-	-	-	-	_	-
14	0.070	0	0.863	-0.505	0	0	0	0	954.6	969.1	0	0	0	0	0	897.5	911.2	897.5	824	-453	1277	0.0236	63.9
15	0.075	0	0.778	-0.628	0	0	0	-	-	-	_	0	0	0	_	_		_	-	-	_	-	-
16	0.080	0	0.675	-0.737	0	0	0	0	940.3	954.6	940.3	0	0	0	0	884.0	897.5	884.0	635	-651.5	1286	0.0238	64.3
17	0.085	0	0.558	-0.830	0	0	0	_	_	-		0	0	0	_	_		-	-	-	_	-	
18	0.090	0	0.427	-0.904	0	0	0	0	926.2	940.3	926.2	0	0	0	0	870.7	884.0	870.7	395	-787	1182	0.0219	59.1

$$\omega = \sqrt{\frac{kg}{W}} = 30 \, rad \, / \sec \quad \Delta \tau = 0.005 \sec \quad M_1 = 4 \exp \left(-\xi \omega \Delta \tau \right) = 3.97 \quad M_2 = \exp \left(-2 \, \xi \omega \Delta \tau \right) = 0.985 \quad F = \frac{\Delta \tau}{3 m \omega} = 1852 \times 10^{-5} \, ft \, / \, kip \quad k = 2700 \, kips \, / \, ft$$

Dr. Dino Chen

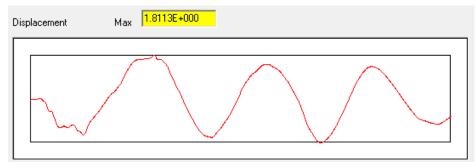
Excel Table for Duhamel Integration

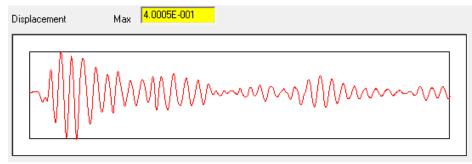



FIGURE E6-2 Response of water tower to blast load.

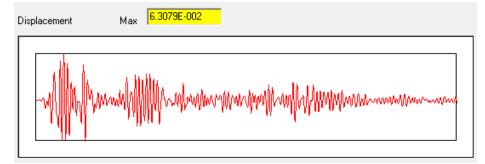
Dr. Dino Chen

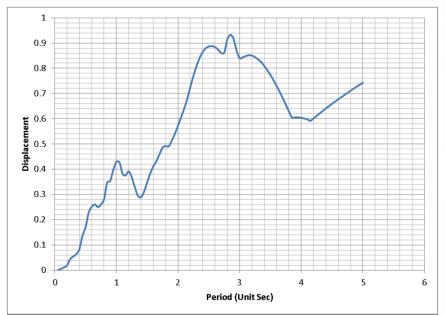
Program for Duhamel Integration (Solver For Force Vibration Problem of SDOF)





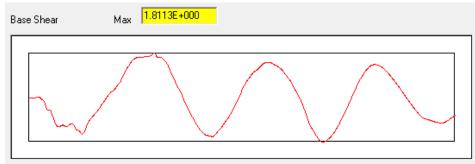
Dr. Dino Chen

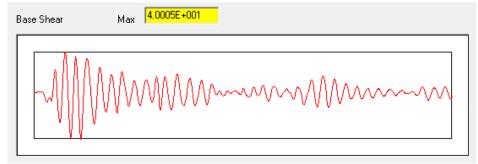

K = 1, T1 = 10.87 s



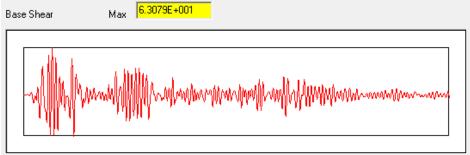
K = 100, T1 = 1.087 s

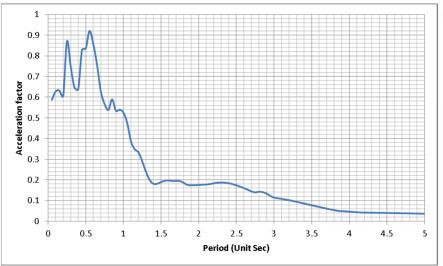
K = 1000, T1 = 0.344 s




University of Hong Kong
Department of Civil Engineering

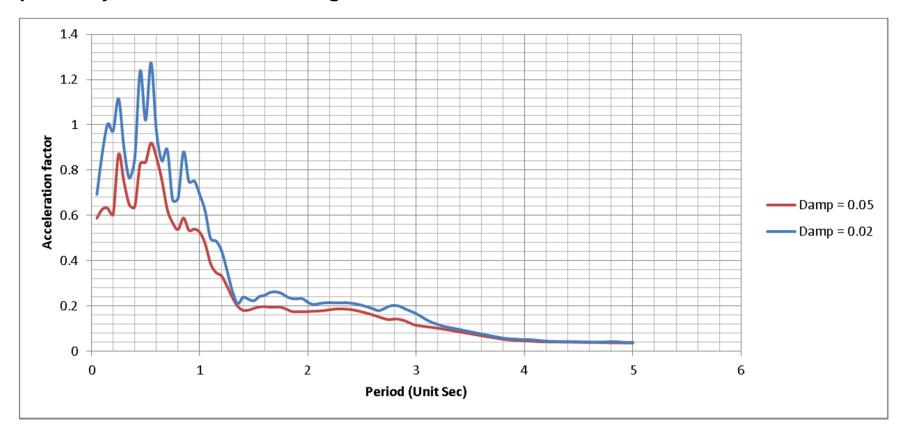
Dr. Dino Chen


K = 1, T1 = 10.87 s



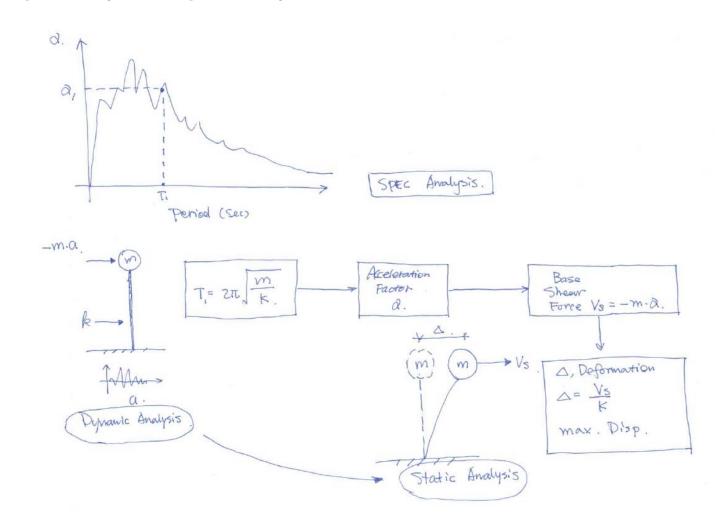
K = 100, T1 = 1.087 s

K = 1000, T1 = 0.344 s


anced the second second

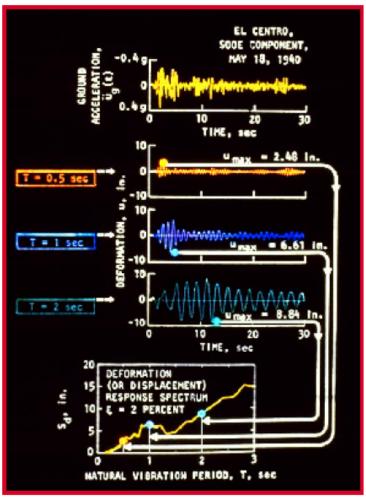
University of Hong Kong
Department of Civil Engineering

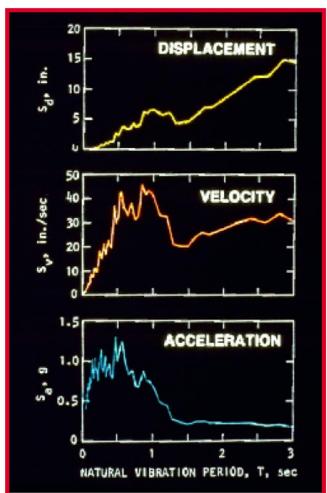
Dr. Dino Chen


Spec Analysis From Duhamel Integration

Dr. Dino Chen

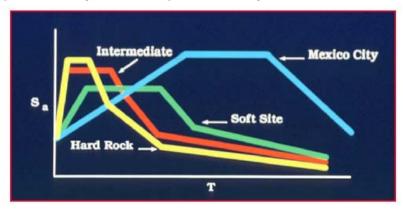
Spec Analysis Simple Theory

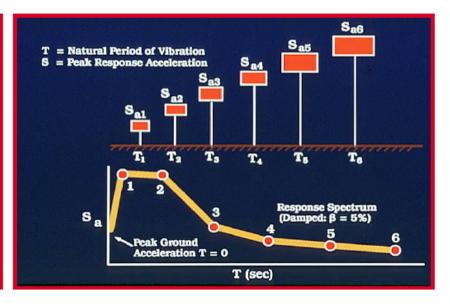




Dr. Dino Chen

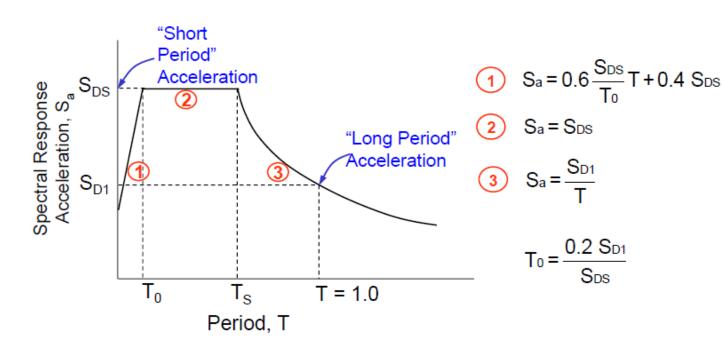
Spec Analysis Simple Theory





Dr. Dino Chen

Spec Analysis Simple Theory



Spec Analysis Simple Theory

ASCE 7-02 Uses a Smoothed Design Acceleration Spectrum

Dr. Dino Chen

SDOF Simulation Program

Lec-03 Forced Vibration of SDOF System

